Or, by inspection,
4/[(x-1)^2(x+1)^2]
= [1/(x-1)^2(x+1)^2]{(1+2x+x^2)+(1-2x+x^2)+(1+x-x^2-x^3)+(1-x-x^2+x^3)}
= [1/(x-1)^2(x+1)^2]{(1+x)^2 + (1-x)^2 - (x+1)^2(x-1) + (x-1)(x-1)^2}
= 1/(x-1)^2 + 1/(x+1)^2 - 1/(x-1) + 1/(x+1)
now integrate each separately.