thanks a lot!!Forbidden. said:I will assume they are in degrees.
Remember that cos θ = sin (90 - θ) ?
So sin 20 + cos 70 = sin 20 + sin (90 - 70) = sin 20 + sin 20.
however sin 20 + sin 20 is not equal to sin 40.
There is a trigonometric identity generally used where:
sin u + sin v = 2 sin (u + v / 2) cos (u - v / 2)
So let u = 20 and v = 20
sin 20 + sin 20 = 2 sin (20 + 20 / 2) cos (20 - 20 / 2) = 2 sin 20
Or simply:
sin θ + sinθ = 2 sin θ
i.e.
sin 20 + sin 20 = 2 sin 20
they're quite easy to prove. Just draw a right-angled triangle with one angle θ and the other angle will be (90 - θ) (angle sum of triangle = 180). You will see that sinθ = cos(90-θ) and cosθ = sin(90-θ).hitomi said:im just wondering why is it
cos θ = sin (90 - θ)?
can it be
sin θ = cos(90-θ)?