Equation of a chord of contact from T(x<sub>o</sub>, y<sub>o</sub>) is
x<sub>o</sub>x/a<sup>2</sup> + y<sub>o</sub>y/b<sup>2</sup> = 1
Therefore for x<sup>2</sup>/15 + y<sup>2</sup>/10 = 1 from (5,4)
5x/15 + 4y/10 = 1
x/3 + 2y/5 = 1
EDIT: I'm not sure if you're supposed to derive that equation.
If you are, you note that from T(x<sub>o</sub>, y<sub>o</sub>) two tangents can be drawn
Tangent at P(x<sub>1</sub>, y<sub>1</sub>): x<sub>1</sub>x/a<sup>2</sup> + y<sub>1</sub>y/b<sup>2</sup> = 1, and
Tangent at Q(x<sub>2</sub>, y<sub>2</sub>): x<sub>2</sub>x/a<sup>2</sup> + y<sub>2</sub>y/b<sup>2</sup> = 1
T lies on both tangents, therefore
x<sub>1</sub>x<sub>o</sub>/a<sup>2</sup> + y<sub>1</sub>y<sub>o</sub>/b<sup>2</sup> = 1, and
x<sub>2</sub>x<sub>o</sub>/a<sup>2</sup> + y<sub>2</sub>y<sub>o</sub>/b<sup>2</sup> = 1
Therefore the chord through both tangents is x<sub>o</sub>x/a<sup>2</sup> + y<sub>o</sub>y/b<sup>2</sup> = 1