Re: HSC 2018 MX2 Marathon
$\noindent For n = 0, 1, 2... let $ I_n = \int_{0}^{\pi/4} tan^{n}\theta d\theta
$\noindent a) Show that $ I_1 = \frac{1}{2}ln2
$\noindent b) Show that, for n $\geq$ 2, $ I_n + I_{n-2} = \frac{1}{n-1}
$\noindent c) For n $\geq$ 2, explain why $I_n < I_{n-2}$ and...