For part (iii):
$\noindent \int_{4}^{6} f'(x)dx = f(6) - f(4) = -6, (A_3 = 2*3) \\ \\Since \int_{2}^{4} f'(x)dx = -\int_{0}^{2} f'(x)dx \\ \\ \int_{0}^{2} f'(x)dx = f(2) - f(0) = 4 \\ \\ Given f(0) = 0 \\ \\ \therefore f(2) = 4 \\ \\ \int_{2}^{4} f'(x)dx = f(4) - f(2) = -4 \\ \\ \therefore f(4)...