I think the main reason why Taylor series wouldn't be taught is because of the baggage that comes with it. Deriving the basic Taylor series is straightforward, but things like the remainder term, error bounds, radius of convergence (in the context of complex analysis) etc is more indepth that requires more than a surface understanding, and teaching that would feel somewhat out-of-place compared to the straightforwardness of all the other topics. Students don't even know the epsilon-delta definition of a limit, which is typically where you start with undergrad calculus. Likewise with ODE's: solving linear second-order ODE's is straightforward, but typically ODE's are paired with linear algebra, which students don't know.
Also, do you remember the SHM ODE? I'm curious, since I've never really seen integrating factors used to solve second-order ODE's, only in first-order ODE's.